If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+42x-784=0
a = 1; b = 42; c = -784;
Δ = b2-4ac
Δ = 422-4·1·(-784)
Δ = 4900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4900}=70$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-70}{2*1}=\frac{-112}{2} =-56 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+70}{2*1}=\frac{28}{2} =14 $
| 2/3(9+18)=6+k | | 4-6c=10 | | -31/2=1/2x+1/2x÷x | | -3x-1=11+3x | | 10y-19y=18 | | 7x/2+2=16 | | –2=–2(w+12) | | 6x+9-2(1-x)=x+9 | | –6=3(w–1) | | 9x+26+7×-17+16×+9=2×+-3×+5×+4× | | 8(x-5)+7=65 | | 9x+7x+16x+11+26-17=2x+(-3x)+5x+4× | | 19x=(4x-6) | | 3n+8.n=12 | | 19x=70 | | 3n+8n=12 | | b–10=1 | | r/8=7/9 | | w–8=4 | | 9x+26+17x-17+16x+11=2x+(-3x)+5+4x | | p–4=20 | | 7(1x+8)-56=49 | | 9z+3-4z=-7 | | (7x)°=(5x) | | 13=c–6 | | (7x)=(5x) | | (5x)=(7x) | | -3h-12=15 | | d-21=58 | | 16=1y | | g+24=98 | | 2(5x-6)+5x=63 |